
AMachine Learning-based Method for Detecting Buffer
Overflow Attack with High Accuracy

Shubin Li1,a, Rongfeng Zheng2,b, Anmin Zhou1,c and Liang Liu1,d,*
1College of Cybersecurity, Sichuan University, Chengdu, Sichuan, China

2College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China
a. lishubin00@sina.cn, b. qswhs@foxmail.com

c. zhouanmin@scu.edu.cn, d. liangzhai118@163.com
*corresponding author: Liang Liu

Keywords: Buffer overflow, machine learning, network traffic detection, feature
extraction.

Abstract: Buffer overflow attack is one of the typical attacks over the internet, it aims to
make the overflow overwrite the legitimate data. How to detect Buffer overflow attack
becomes a hot topic in research. Protocol uncertainties and varying attack modes will
seriously affect the efficiency and the accuracy of attack detection. Recently, machine
learning is widely applied in network traffic detection and data processing, meanwhile
tradition buffer overflow detection method based on feature matching is difficult to detect
the attack load hidden in network traffic. In order to address these challenges, we apply
machine learning to detect remote buffer overflow attack, to enhance the classification
ability of machine learning models, we propose a unique set of feature extraction rules after
analyzing a large number of attack codes. This method is not only capable of identifying
various attack forms and unknown attack types but also has the ability of supporting
protocol independent detection and identifying attacks using various protocols based on
TCP or UDP. In order to evaluate the performance of our method, three machine learning
algorithms are selected to establish detection models and the model base on random forest
algorithm perform best., moreover, comparison experiments with other detection methods
are also carried out based on the same dataset. The experimental results show our method
can detect remote buffer overflow attack with adaptability, efficiency and accuracy.

1. Introduction

Remote network attack as the main form of attack in the Internet has attracted wide attention [1].
Due to the openness and interactivity of the network and the insufficient security of the code,the
devices in the network are vulnerable facing to network attack. Buffer overflow attack is one of the
typical network attacks, it is an attack that exploits buffer overflow vulnerabilities, which exists
widely in various applications and even operating systems. It can not only cause the program to
crash, but also make attackers obtain the control of the system.

The essence of buffer overflow is that the computer fills the buffer with more data bits than the
buffer itself, and the overflow data overrides the legal data. In the ranking of vulnerabilities since
2003, buffer overflows have always been "famous on the list." Well-known shock waves, big worm

2020 International Conference on Computer, Network, Communication and Information Systems (CNCI 2020)

Published by CSP © 2020 the Authors 752



shocks, etc. have all achieved attacks through buffer overflows. Buffer overflow attack can be
generated in two ways: remote buffer overflow attack [2] and local buffer overflow [3]. In a remote
buffer overflow attack, the attacker usually uses common protocols to disguise the attack code, so
that the program's buffer overflows to achieve the purpose of the attacker; see Figure 1. Local buffer
overflow attack is different from remote buffer overflow attack, it is not a network attack. Normally,
the target is a local application, an attacker exploits a buffer overflow vulnerability in the source
code of a local application to crack the program or gain developer permissions.

Figure 1: A diagram of remote buffer overflow attack.

DPI (Deep Packet Inspection) technology is one of the commonly used traditional methods.
Common tools such as 'snort' and 'bro' have been developed on the basis of this technology. But
once hackers deliberately avoid using some common features, it is difficult for the traditional
network intrusion detection system to identify attack payloads contained in data packets. Although
many efforts have been made to detect remote buffer overflow attack, we still have some problems
that have not been solved. We summarize these problems as follows: (1) The remote buffer
overflow method based on feature matching does not have the ability to detect attack code with
insignificant features and unknown attack types. The essence of this detection method is to analyze
the characteristics of a large number of attack codes, and establish a corresponding feature library
based on these characteristics. However, as the network size continues to increase, the types of
attack code are constantly changing. Attackers can change the type of code as needed to be used for
immune signature detection. For unknown attack codes, because the feature database contains only
the features of known attack types, this method also does not have the ability to detect unknown
types of attack codes; (2) lack of protocol independent detection methods [4]. There are many kinds
of remote buffer overflow attacks based on multiple network protocols. We do not know which type
of attacks will be handled. Each attack type has its own characteristics and could exploit multiple
protocols to launch attacks. So, a protocol-independent method is highly expected to detect remote
buffer overflow attack. According to the discussion above, a protocol-independent buffer overflow
detection method is urgently needed, which has the ability of handling variable attack types and
unknown attack types.

In this paper, we propose a remote buffer overflow attack detection method based on machine
learning [5,6] that can support protocol independence and handling of unknown attack types. First,
with the purpose of handling changing attack patterns and unknown attack types, we collecte and
reproduce the attack code that exploited the remote buffer overflow vulnerability in the past ten
years, by analyzing the header fields and time distribution of the packets containing the attack
payload and the necessary conditions for buffer overflow, we propose a novel feature extraction
rules to identify changing attack types with the help of machine learning. To make our method
protocol independent, when designing features, time-related statistical features are our key
candidates for feature selection, such as the rate of data packets. In addition, compared to the unique

753



fields of various application layer protocols, we are more inclined to choose the common fields of
the underlying protocols to ignore the differences between different application layer protocols. By
doing so, our method can not only retain the same features of the traditional detection methods, but
also has ability of handling variable attack types and supporting protocol independence.

The structure of this paper is as follows. Section Ⅱ gives a brief introduction on related work.
The theoretical basis of our method is given Section Ⅲ. In Section Ⅳ, we present the system
architecture of our method in detail. The performance evaluation results of comparative tests are
showed in Section Ⅴ. Finally, conclusions are covered in the last section.

2. Related Works

Buffer overflow vulnerability is one of the common and high-risk vulnerabilities. There are three
different types of methods that are widely used to detect buffer overflow vulnerabilities or
aggressive behavior. The first is the buffer overflow vulnerability detection technology based on
source code [7]. It is a method of detecting whether a buffer overflow vulnerability exists in the
source code by analyzing the semantics and syntax of the source program. Shahriar, H. and Haddad,
H.M. [8] used source-based buffer overflow detection technology to detect vulnerabilities and repair
vulnerable programs without modifying application functionality. This method relies on the source
code of the program and researchers can effectively find some obvious buffer overflow
vulnerabilities, but its high false alarm rate is major shortcomings. The second is the detection
technology based on the target code. The essence of this method is to analyze the target code in a
black box and use random strings of different lengths to test the target code so that we can find
buffer overflow vulnerabilities in software, Terry Bruce Gillette [9] proposed a detection method
based on object code. The main idea is to use disassembly tools to process the object code, and then
use the source-based detection and analysis technology to process the obtained results. Joao Duraes
[10] proposed a method to find buffer overflow vulnerabilities without source code. The essence is
to analyze executable code to locate suspicious functions. Then input some test parameters to the
suspicious function for robustness test to determine the authenticity of the suspicious function.
However, because the execution path cannot be completely traversed, this method has a high rate of
false negatives. Not only that, the position of the vulnerability in the code cannot be determined.
The third is the detection technology based on feature matching. This technology is mainly used for
remote buffer overflow attack detection. By analyzing the characteristics of the buffer overflow
attack code, a feature database is established, and the matching technology is used to detect whether
the data flow contains attack packets. Ivan Homoliak and Ladislav Sulak [11] proposed an approach:
signature matching against packets’ payload versus analysis of packets’ headers with the behavioral
analysis of the connection’s flow. This method is characterized by simple implementation and low
consumption, but it cannot detect attack code without obvious features.

There are numerous detection methods for buffer overflow attack detection. However, few of
existing methods considered the variability of attack forms and protocol independence. In order to
solve these problems, we propose to integrate machine learning into remote buffer overflow attack
detection and standardize the data in the packets.

3. Preliminaries

In this section, we introduce the principle of buffer overflow attacks, which is the theoretical
preliminaries of our method.

In memory, the growth direction of memory is from low address to high address. In contrast to
the growth direction of memory, the growth direction of stack is opposite to the former, as shown in
Figure 2. The main function is first pushed onto the stack in the direction of stack growth. Before

754



called function is pushed onto the stack, the address of the next instruction stored in the EIP register
is first pushed onto the stack, and then the base address value in the real-time EBP register is pushed
onto the stack. After the called function is pushed onto the stack, if the length of the passed string is
longer than the length of the buf array, a buffer overflow will occur. More seriously, if the length of
the string is calculated by the hacker, the return address will be accurately overwritten, and the
program will jump to the shellcode [12] pointed to by the new address. At this point, the victim's
computer will run shellcode compiled by the hacker.

Figure 2: A diagram of buffer overflow.

4. Method

In this section, we introduce the architecture of a remote buffer overflow attack detection method
based on machine learning. Then, we describe our feature extraction rules and some of them in
detail.

4.1.The Overall Architecture of Our Method

Figure 3 shows the system architecture of our detection method. In the initialization module, we
first merge the packets into a network stream according to five tuple information. In the data
preprocessing module, we extract the features of according to the unique feature extraction rules,
and then these data will be normalized. After these numerical features are identified by the classifier
model, malicious traffic will be identified and its IP address will be blacklisted for the coarse
filtering module, and normal traffic will be released. The remote buffer overflow attack detection is
described as Algorithm I.

4.2.Feature Extraction

In this subsection, we describe our feature extraction rules and some of them in detail. The features
we used is depicted in Table 1.

The three types of features, 'Type of Service', 'Time to Live', and 'Port numbers', are calculated
based on the network flow and the header of the data packet. In order to make our method more
protocol-independent, we only select a small amount of header field information and focus on
statistical information.

755



Figure 3: System architecture.

Algorithm I Remote buffer overflow detection
1. Use the filtering module to find out if the IP address of the newly arrived data packet or data flow
is in the blacklist. If it is, the data packet will be filtered, otherwise the data packet will go to the
next step.
2. Use mathematical methods to record statistical features, such as the number of incoming and
outgoing data packets and so on, and selectively record the header fields of the protocol at each
layer of the data packet.
3. Normalize features
4. Identify by classifier, normal traffic will be allowed, malicious traffic will be filtered, and its IP
address will be added to the blacklist.
5. Return step 1.

756



Table 1: Summary of the features used in experiments.

Num Source Feature name
1 Type of Service Mode
2 Time to Live (TTL) Minimum of TTL
3 Time to Live (TTL) Maximum of TTL
4 Time to Live (TTL) Sum of TTL
5 Time to Live (TTL) Mean of TTL
6 Time to Live (TTL) Standard deviation of TTL
7 Port numbers Source port number
8 Port numbers Destination port number
9 Packet counting Number of incoming packets
10 Packet counting Number of outgoing packets
11 Packet counting Number of all packets
12 Packet counting Number of non-data packets
13 Payload lengths Sum of payload lengths
14 Payload lengths Mean of payload lengths
15 Payload lengths Standard deviation of payload lengths
16 Fragmentation Number of fragmented packets
17 Fragmentation Number of non-fragmented packets
18 Fragmentation Fragmented packet payload lengths
19 Transfer time Time of connection
20 Transfer time Bits per second
21 Transfer time Total time
22 Transfer time Total time for no packet transfer
23 Other The number of consecutive identical characters
24 Other The existence of '\0'
25 Other The existence of jump addresses

A large number of padding characters is a necessary condition for buffer overflow. To facilitate
operations, hackers often use a large number of identical characters or a large number of regular
characters to fill the buffer, which is an important feature of buffer overflow attacks. The length of
the payload will be significantly longer, and it will also cause a lot of fragmentation of the network
data stream.

We know that '\ 0' represents the end of this string. In shellcode, the strcpy function will be
truncated if it encounters '0x00' when it is executed, causing the shellcode to be incomplete, so that
the return address cannot be overwritten, so there is no '0x00' in the shellcode.

In addition, the inclusion of jump addresses in the payload is also an important feature of the
buffer overflow attack code. Traditionally, the return address is modified to the address where the
shellcode is located. When the function execution ends, the return address is popped from the stack,
which corresponds to the address of the shellcode. The final shellcode code is executed by the
system. Just like reading a file with an absolute path, the address will occasionally be wrong. To
solve this problem, hackers invented a method called 'jmp esp', whose main purpose is to overwrite

757



the return address with the address of the 'jmp esp' instruction. The instruction is then executed by
the CPU so that the execution pointer jumps to the location pointed to by ESP register, the code at
the location pointed to by the ESP register will be executed. As shown in Figure.4, the location
pointed to by the ESP register is where the shellcode is located.

Figure 4: 'Jmp esp' schematic.

5. Experiments and Performance Evaluation

To evaluate the availability of our method, two comparative experiments were conducted on the
same data set. First, in order to find out the impact of different machine learning models on the
experimental results, we selected three different models to train and test the experimental data.
Second, we choose the best performing machine learning model as a classifier for comparison with
traditional detection methods. Our method performs better than traditional detection methods in
both Recall and Precision.

5.1.Dataset

To evaluate the effectiveness of our method, we collected and reproduced about 500 exploits of
buffer overflow vulnerabilities in the past 10 years from major authoritative vulnerability websites,
which included exploits of major vulnerabilities such as Eternal Blue. Not only that, we collected
nearly 3000 normal network data traffic from the laboratory server and saved them as pcap files for
whitelisting. These 3,500 pcap samples constitute a complete data set. In addition, assessment
indicators such as Precision, Recall and F1-score are used to evaluate the performance of our
method.

5.2.Experimental Design

Different from the traditional feature-based detection method, constructing excellent features is one
of the necessary conditions for good performance of the machine learning-based attack detection
method. The feature construction rules have been introduced in Section 4. In addition, suitable
machine learning models are also very important, so we choose three different machine learning
models: Random forest [13], Bayesian network [14], AdaBoost [15], and then train and test them
separately. In order to make an intuitive comparison between our method and the traditional method,
we choose the Random forest model with the best test results as the final classifier and compare it
with the traditional method on the same dataset. Finally, the Precision, Recall and F1-score are
evaluated and compared.

758



5.3.Experimental Result

Three different machine learning models are used for training and testing on the same data set
according to the ten-fold cross-validation method, as shown in Table 2, we can see that the random
forest model has a better performance in the Precision, Recall, and F1-score.

Table 2: Evaluation indicators of different machine learning models.

Models Precision Recall F1-score

Random forest 99.4% 99.2% 99.3%
Bayesian 98.3% 98.0% 98.1%
SVM 97.4% 98.1% 97.6%

AdaBoost 96.0% 97.1% 96.4%
Random tree 94.7% 95.2% 94.8%

We select the best-performing random forest model as a classifier to compare with the
feature-based method called HBVDS [16]. As can be seen from Table 3, compared with traditional
methods, our method has higher accuracy and lower false alarm rate, and the overall index is better
than the detection method based on feature matching.

Table 3: Results between our method and traditional methods.

Methods Precision Recall F1-score

Our method 99.4% 99.2% 99.3%

HBVDS 97.2% 96.8% 96.9%

6. Conclusions

This paper proposed a remote buffer overflow attack detection method based on machine science.
This method combines machine learning with remote buffer overflow detection, not only that, we
also proposed a specific feature extraction rule for machine learning based on the rules of attack
code. It can be seen from the results of multiple comparative experiments that compared with
traditional attack detection methods based on feature matching, our method not only has better
performance in accuracy and recall, but also has the characteristics of protocol independence. The
network traffic at the network nodes is heavy, and a very low false alarm rate will also cause a large
number of normal traffic to be falsely reported. In the future, we will further modify the feature
rules to reduce the false alarm rate to achieve better detection results.

References

[1] X.Y.Jing, Z.Yan, W.Pedrycz, Security data collection and data analytics in the internet: a survey, IEEE Commun.
Surv. Tutor. (2018), doi:10.1109/COMST.2018.2863942.

[2] Zhang X, Liu H Y. Design and Implementation of Remote Buffer Overflow and implanted Backdoor[J]. 2012.
[3] Kuperman B A, Brodley C E , Ozdoganoglu H, et al. Detection and prevention of stack buffer overflow attacks[J].

Communications of the ACM, 2005, 48(11): 50-56.
[4] Swinnen, Arne, et al. "ProtoLeaks: A Reliable and Protocol-Independent Network Covert Channel." International

Conference on Information Systems Security Springer, Berlin, Heidelberg, 2012.

759



[5] Imamverdiyev, Yadigar , and L. Sukhostat . "Anomaly detection in network traffic using extreme learning machine."
2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)
IEEE, 2016.

[6] Stevanovic, Matija , and J. M. Pedersen. "An efficient flow-based botnet detection using supervised machine
learning." 2014 International Conference on Computing, Networking and Communications (ICNC) IEEE, 2014.

[7] Zheng Y, Li H, Chen K. Buffer Overflow Detection on Binary Code[J]. Journal of Shanghai Jiaotong
University(Science), 2006(02): 107-112.

[8] Shahriar, H.,Haddad, H.M.. Rule-Based Source Level Patching of Buffer Overflow Vulnerabilities[P]., 2013.
[9] Terry Bruce Gillette,A Unique Examination of the Buffer Overflow Condtion [D].Florida: Engineering Florida

Institute of Technology, 2002:5-34.
[10] Joao Duraes,Henrique Madeira.A Methodolog for Automated Identification of Buffer Overflow Vulnerabilities in

Executable Software Without Source code [J]. Lecture Notes in Computer Science, 2005:3746-3747.
[11] Homoliak I, Sulak L, Hanacek P. Features for Behavioral Anomaly Detection of Connectionless Network Buffer

Overflow Attacks[C]// 17th International Workshop on Information Security Applications (WISA 2016). Springer,
Cham, 2016.

[12] Huang H L, Liu T J, Chen K H, et al. A Polymorphic Shellcode Detection Mechanism in the Network[C]//
Proceedings of the 2nf International Conference on Scalable Information Systems, Infoscale 2007, Suzhou, China,
June 6-8, 2007. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2007.

[13] Wang Y, Xiang Y, Zhang J. Network traffic clustering using Random Forest proximities[C]// Communications
(ICC), 2013 IEEE International Conference on. IEEE, 2013.

[14] Xu Y, Cheng P, Chen Z, et al. Mobile Collaborative Spectrum Sensing for Heterogeneous Networks: A Bayesian
Machine Learning Approach[J]. IEEE Transactions on Signal Processing, 2018, 66(21):5634-5647.

[15] Souza E N D, Matwin S, Fernandes S. Network traffic classification using AdaBoost Dynamic.[J]. 2013.
[16] Han W. Research on buffer overflow attack code detection and defense technology [D]. PLA information

engineering university, 2012. (in Chinese).

760




